Peak Traffic Flow Predictions: Exploiting Toll Data from Large Expressway Networks

Author:

Shen LingORCID,Lu Jian,Geng Dongdong,Deng Ling

Abstract

Big data from toll stations provides reliable and accurate origin-destination (OD) pair information of expressway networks. However, although the short-term traffic prediction model based on big data is being constantly improved, the volatility and nonlinearity of peak traffic flow restricts the accuracy of the prediction results. Therefore, this research attempts to solve this problem through three contributions, firstly, proposing the use the Pauta criterion from statistics as the standard for defining the anomaly criteria of expressway traffic flows. Through comparison with the common local outlier factor (LOF) method, the rationality and advantages of the Pauta criterion were expounded. Secondly, adding week attributes to data, and splitting the data based on the similarity characteristics of traffic flow time series in order to improve the accuracy and efficiency of data input. Thirdly, by introducing empirical mode decomposition (EMD) to decompose the signal before autoregressive integrated moving average (ARIMA) model training is carried out. The first two contributions are for efficiency, the third is to deal with the volatility and nonlinearity of the abnormal peak training data. Finally, the model is analyzed, based on the expressway toll data of the Jiangsu Province. The results show that the EMD-ARIMA model has more advantages than the ARIMA model when dealing with fluctuating data.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3