Appropriate Use of Lime in the Study of the Physicochemical Behaviour of Stabilised Lateritic Soil under Continuous Water Ingress

Author:

Okeke ChukwuelokaORCID,Abbey SamuelORCID,Oti JonathanORCID,Eyo Eyo,Johnson Abiola,Ngambi SamsonORCID,Abam Tamunoene,Ujile Mgboawaji

Abstract

Lime stabilisation is one of the traditional methods of improving the engineering properties of lateritic soils for use as subgrade and foundation materials for the construction of road pavements and highway embankments. Understanding the mechanical performance of lime-stabilised lateritic subgrades in terms of their durability under continuous water ingress will improve environmental sustainability by conserving scarce natural resources and reducing the environmental impacts of repair and replacement of pavements. However, there are several conflicting reports on the durability of lime-stabilised soils subjected to continuous water ingress and harsh environmental conditions. Therefore, this paper evaluates the influence of leaching on the physicochemical behaviour and durability of lime-stabilised lateritic soil under continuous water ingress, simulating the typical experience in a tropical environment. Variations in the strength and durability of the lateritic soil at various lime contents (0, 2.5, 5, 7.5, 10, 15, and 20 wt.%) and soaking periods (3, 7, 14 and 28 days) were evaluated by performing the California bearing ratio tests before and after subjecting the lime-lateritic soil (LLS) samples to continuous leaching using two modified leaching cells. Furthermore, physicochemical analysis was performed to assess the variation of cation concentrations and changes in the physical properties of the pore fluid as the leaching time progressed from 3 to 28 days. The results show that the minimum strength reduction index of the soil corresponds to its lime stabilisation optimum (LSO). Electrical conductivity decreased monotonically and almost uniformly with an increase in leaching time, irrespective of lime content. So, too, was calcium concentration and to a lesser degree for pH and potassium concentration. Adverse changes in the physicochemical behaviour of the LLS samples occurred at lime contents below and slightly above the optimum lime content of the soil. Whereas permanent pozzolanic reactions occurred at lime contents above the LSO and thus resulted in a 45-fold increase in strength and durability. The results are significant for reducing the detrimental effect of the leaching-induced deterioration of flexible pavements founded on tropical floodplains.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3