Mechanical and Microstructural Characterisation of Cooling Pipes for the Compact Muon Solenoid Experiment at CERN

Author:

Zaburda George,Onnela Antti,Cichy Kamil,Daguin JeromeORCID,Lunt Alexander J. G.ORCID

Abstract

The Compact Muon Solenoid (CMS) is a particle physics experiment situated on the Large Hadron Collider (LHC) at CERN, Switzerland. The CMS upgrade (planned for 2025) involves installing a new advanced sensor system within the CMS tracker, the centre of the detector closest to the particle collisions. The increased heat load associated with these sensors has required the design of an enhanced cooling system that exploits the latent heat of 40 bar CO2. In order to minimise interaction with the incident radiation and improve the detector performance, the cooling pipes within this system need to be thin-walled (~100 μm) and strong enough to withstand these pressures. The purpose of this paper is to analyse the microstructure and mechanical properties of thin-walled cooling pipes currently in use in existing detectors to assess their potential for the tracker upgrade. In total, 22 different pipes were examined, which were composed of CuNi, SS316L, and Ti and were coated with Ni, Cu, and Au. The samples were characterised using computer tomography for 3D structural assessment, focused ion beam ring-core milling for microscale residual stress analysis, optical profilometry for surface roughness, optical microscopy for grain size analysis, and energy dispersive X-ray spectroscopy for elemental analysis. Overall, this examination demonstrated that the Ni- and Cu-coated SS316L tubing was optimal due to a combination of low residual stress (20 MPa axial and 5 MPa hoop absolute), low coating roughness (0.4 μm Ra), minimal elemental diffusion, and a small void fraction (1.4%). This result offers a crucial starting point for the ongoing thin-walled pipe selection, development, and pipe-joining research required for the CMS tracker upgrade, as well as the widespread use of CO2 cooling systems in general.

Publisher

MDPI AG

Subject

General Materials Science

Reference45 articles.

1. The CMS Outer Tracker Upgrade for the HL-LHC. Technical Proposal for the Phase-II Upgrade of the Compact Muon Solenoid;Butler,2015

2. The CMS Outer Tracker Upgrade for the HL-LHC

3. CO2 cooling system for Insertable B Layer detector into the ATLAS experiment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3