TSCH Evaluation under Heterogeneous Mobile Scenarios

Author:

Orfanidis CharalamposORCID,Elsts AtisORCID,Pop PaulORCID,Fafoutis XenofonORCID

Abstract

Time Slotted Channel Hopping (TSCH) is a medium access protocol defined in the IEEE 802.15.4 standard. It has proven to be one of the most reliable options when it comes to industrial applications. TSCH offers a degree of high flexibility and can be tailored to the requirements of specific applications. Several performance aspects of TSCH have been investigated so far, such as the energy consumption, reliability, scalability and many more. However, mobility in TSCH networks remains an aspect that has not been thoroughly explored. In this paper, we examine how TSCH performs under mobility situations. We define two mobile scenarios: one where autonomous agriculture vehicles move on a predefined trail, and a warehouse logistics scenario, where autonomous robots/vehicles and workers move randomly. We examine how different TSCH scheduling approaches perform on these mobility patterns and when a different number of nodes are operating. The results show that the current TSCH scheduling approaches are not able to handle mobile scenarios efficiently. Moreover, the results provide insights on how TSCH scheduling can be improved for mobile applications.

Funder

Innovation Fund Denmark

ERDF Activity 1.1.1.2 “Post-doctoral Research Aid”

Publisher

MDPI AG

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3