Mixed-Unit-Model-Based and Quantitative Studies on Groundwater Recharging and Discharging between Aquifers of Aksu River

Author:

Huang Jiyu,Ge Yanyan,Li Sheng

Abstract

The confined aquifer in the Aksu River Basin is the main aquifer for drinking water within the area. In this study, the unconfined aquifer and the confined aquifer in the Aksu River Basin were divided into different water circulation units through analysis of their flow field. After the hydrochemistry and isotope characteristics of each unit were analyzed, these data were used as water volume quantitative information of the aquifer according to the mixed-unit model. With this quantitative information, the transformation relationship between the unconfined aquifer and the confined aquifer, the recharging source, recharging amount, recharging proportion, and discharging amount of the confined aquifer were revealed. The results showed that the confined aquifer receives a recharge of 21.48 × 106 m3/a from the unconfined aquifer. The recharging sources of the confined aquifer in the middle and upper stream of the Aksu River mainly included side recharging and leakage recharging from the unconfined aquifer, while the confined aquifer received little recharging from unconfined aquifer downstream of the Aksu River and did not receive recharging from the unconfined aquifer in the southeast of the basin. Additionally, drainage methods of the confined aquifer were mainly lateral flowing and artificial well-group pumping. The side discharging volume through the whole area was 15.67 × 106 m3/a, and the artificial pumping volume was 21.20 × 106 m3/a. The confined aquifer was in a negative balance state from the middle-upper stream to the downstream. The downstream confined aquifer and its unconfined aquifer had a plane laminar flow movement, and the unconfined aquifer provided very little recharging to the confined one, which was further enhanced by the artificial well pumping and caused an accumulating negative balance state of the downstream aquifer.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3