Nanogenerator-Based Wireless Intelligent Motion Correction System for Storing Mechanical Energy of Human Motion

Author:

Mao YupengORCID,Sun Fengxin,Zhu Yongsheng,Jia Changjun,Zhao TianmingORCID,Huang Chaorui,Li Caixia,Ba Ning,Che Tongtong,Chen Song

Abstract

As it is urgently needed to address the energy consumption and health care problems caused by population growth, the field of sustainable energy collection and storage equipment as well as intelligent health care for monitoring human motion behavior has received wide attention and achieved rapid development. However, the portable intelligent systems that integrate them have not been widely discussed. In this work, we propose a design of a nanogenerator-based wireless intelligent motion correction system, combining triboelectric nanogenerator technology with wireless intelligent host computer signal processing and visualization systems. Under the condition of no external power supply, a noninvasive triboelectric nanogenerator (FL-TENG) sensor integrated system stores the mechanical energy due to human movement behavior and drives wireless micro-electronic devices to realize the human–computer interaction application of the intelligent system. In the conducted test, the reported instantaneous output of an ordinary clap action was around 241V. For a variety of physical exercise types being monitored, it can accurately determine human movement behavior and perform error correction and scoring for movement techniques. Additionally, using hydrogel as an electrode improves the service life and stability of the device. Therefore, this flexible and convenient design concept is beneficial to the development and utilization of sustainable energy and sports activities. In addition, it extends the application prospects of FL-TENG in self-powered sensing systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3