Regionalization of an Existing Global Forest Canopy Height Model for Forests of the Southern United States

Author:

Ku Nian-WeiORCID,Popescu Sorin,Eriksson Marian

Abstract

A large-scale global canopy height map (GCHM) is essential for global forest aboveground biomass estimation. Four GCHMs have recently been built using data from the Geoscience Laser Altimeter System (GLAS) sensor aboard the Ice, Cloud, and land Elevation Satellite (ICESat), along with auxiliary spatial and climate information. The main objectives of this research were to find out how well a selected GCHM agrees with airborne lidar data from locations in the southern United States and to recalibrate that GCHM to more closely match the forest canopy heights found in the region. The airborne lidar resource was built from data collected between 2010 and 2012, available from in-house and publicly available sources, for sites that included a variety of vegetation types across the southern United States. EPA ecoregions were used to provide ecosystem information for the southern United States. The airborne lidar data were pre-processed to provide lidar-derived metrics, and assigned to four height categories—namely, returns from above 0 m, 1 m, 3 m, and 5 m. The assessment phase results indicated that the 90th and 95th percentiles of the airborne lidar height values were well-suited for use in the recalibration phase of the study. Simple linear regression was used to generate a new, recalibrated GCHM. It was concluded that the characterization of the agreement of a selected GCHM with local data, followed by the recalibration of the existing GCHM to the local region, is both viable and essential for future GCHMs in studies conducted at large scales.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3