A Semi-Automatic Method for Extracting Small Ground Fissures from Loess Areas Using Unmanned Aerial Vehicle Images

Author:

Jia Hongguo,Wei Bowen,Liu Guoxiang,Zhang Rui,Yu Bing,Wu Shuaiying

Abstract

Remote sensing-based ground fissure extraction techniques (e.g., image classification, image segmentation, feature extraction) are widely used to monitor geological hazards and large-scale artificial engineering projects such as bridges, dams, highways, and tunnels. However, conventional technologies cannot be applied in loess areas due to their complex terrain, diverse textural information, and diffuse ground target boundaries, leading to the extraction of many false ground fissure targets. To rapidly and accurately acquire ground fissures in the loess areas, this study proposes a data processing scheme to detect loess ground fissure spatial distributions using unmanned aerial vehicle (UAV) images. Firstly, the matched filter (MF) algorithm and the first-order derivative of the Gaussian (FDOG) algorithm were used for image convolution. A new method was then developed to generate the response matrices of the convolution with normalization, instead of the sensitivity correction parameter, which can effectively extract initial ground fissure candidates. Directions, the number of MF/FDOG templates, and the efficiency of the algorithm are comprehensively considerate to conclude the suitable scheme of parameters. The random forest (RF) algorithm was employed for the step of the image classification to create mask files for removing non-ground-fissure features. In the next step, the hit-or-miss transform algorithm and filtering algorithm in mathematical morphology is used to connect discontinuous ground fissures and remove pixel sets with areas much smaller than those of the ground fissures, resulting in a final binary ground fissure image. The experimental results demonstrate that the proposed scheme can adequately address the inability of conventional methods to accurately extract ground fissures due to plentiful edge information and diverse textures, thereby obtaining precise results of small ground fissures from high-resolution images of loess areas.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Geology and Geomorphology;Wang,2013

2. Classification system of 1:1000,000 digital loess geomorphology in China Geo-information;Chai;Science,2006

3. Differential Settlement due to Ground Fissures in Xi’an

4. Integrated Geophysical Detection on Ground Fissure in Shanxi Jingyang Seismostation of National Highway 211;Li;Chin. J. Eng. Geophys.,2014

5. Ground fissures in Xi’an and measures to prevent damage to the Metro tunnel system due to geohazards

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3