Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors

Author:

Nanni Marcos RafaelORCID,Demattê José Alexandre MeloORCID,Rodrigues MarlonORCID,Santos Glaucio Leboso Alemparte Abrantes dosORCID,Reis Amanda SilveiraORCID,Oliveira Karym Mayara de,Cezar EversonORCID,Furlanetto Renato Herrig,Crusiol Luís Guilherme Teixeira,Sun LiangORCID

Abstract

We evaluated the use of airborne hyperspectral imaging and non-imaging sensors in the Vis—NIR—SWIR spectral region to assess particle size and soil organic matter in the surface layer of tropical soils (Oxisols, Ultisols, Entisols). The study area is near Piracicaba municipality, São Paulo state, Brazil, in a sugarcane cultivation area of 135 hectares. The study area, with bare soil, was imaged in April 2016 by the AisaFENIX aerotransported hyperspectral sensor, with spectral resolution of 3.5 nm between 380 and 970 nm, and 12 nm between 970 and 2500 nm. We collected 66 surface soil samples. The samples were analyzed for particle size and soil organic matter content. Laboratory spectral measurements were performed using a non-imaging spectroradiometer (ASD FieldSpec 3 Jr). Partial Least Square Regression (PLSR) was used to predict clay, silt, sand and soil organic matter (SOM). The PLSR functions developed were applied to the hyperspectral image of the study area, allowing development of a prediction map of clay, sand, and SOM. The developed PLSR models demonstrated the relationship between the predictor variables at the cross-validation step, both for the non-imaging and imaging sensors, when the highest r and R2 values were obtained for clay, sand, and SOM, with R2 over 0.67. We did not obtain a satisfactory model for silt content. For the non-imaging sensor at the prediction step, R2 values for clay and SOM were over 0.7 and sand was lower than 0.54. The imaging sensor yielded models for clay, sand, and SOM with R2 values of 0.62, 0.66, and 0.67, respectively. Pearson correlation between sensors was greater than 0.849 for the prediction of clay, sand, and SOM. Our study successfully generated, from the imaging sensor, a large-scale and detailed predicted soil maps for particle size and SOM, which are important in the management of tropical soils.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Financiadora de Estudos e Projetos

Central Public-Interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3