Abstract
The high-fidelity attenuation of random ground penetrating radar (GPR) noise is important for enhancing the signal-noise ratio (SNR). In this paper, a novel network structure for convolutional denoising autoencoders (CDAEs) was proposed to effectively resolve various problems in the noise attenuation process, including overfitting, the size of the local receptive field, and representational bottlenecks and vanishing gradients in deep learning; this approach also significantly improves the noise attenuation performance. We described the noise attenuation process of conventional CDAEs, and then presented the output feature map of each convolutional layer to analyze the role of convolutional layers and their impacts on GPR data. Furthermore, we focused on the problems of overfitting, the local receptive field size, and the occurrence of representational bottlenecks and vanishing gradients in deep learning. Subsequently, a network structure optimization strategy, including a dropout regularization layer, an atrous convolution layer, and a residual-connection structure, was proposed, namely convolutional denoising autoencoders with network structure optimization (CDAEsNSO), comprising an intermediate version, called atrous-dropout CDAEs (AD-CDAEs), and a final version, called residual-connection CDAEs (ResCDAEs), all of which effectively improve the performance of conventional CDAEs. Finally, CDAEsNSO was applied to attenuate noise for the H-beam model, tunnel lining model, and field pipeline data, confirming that the algorithm adapts well to both synthetic and field data. The experiments verified that CDAEsNSO not only effectively attenuates strong Gaussian noise, Gaussian spike impulse noise, and mixed noise, but it also causes less damage to the original waveform data and maintains high-fidelity information.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献