A High-Robust Displacement Prediction Model for Super-High Arch Dams Integrating Wavelet De-Noising and Improved Random Forest

Author:

Gu Chongshi123,Wu Binqing123ORCID,Chen Yijun123ORCID

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

3. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing 210098, China

Abstract

We present a novel deformation prediction model for super-high arch dams based on the prototype monitoring displacement field. The noise reduction processing of the monitoring data is conducted by a wavelet technique. The performance-improved random forest intelligent regression approach is then established for constructing the arch dam deformation statistical models, whose hyper-parameters are intelligently optimized in terms of the improved salp swarm algorithm. In total, three enhancement strategies are developed into the standard salp swarm algorithm to improve the global searching ability and the phenomenon of convergence precocious, including the elite opposition-based learning strategy, the difference strategy, and the Gaussian mutation strategy. A prediction example for super-high arch dams is presented to confirm the feasibility and applicability of the prediction model based on five evaluation criteria. The prediction results show that the proposed model is superior to other standard models, and exhibits high-prediction accuracy and excellent generalization performance. The stability of the proposed prediction model is investigated by artificially introducing noise strategies, which demonstrates the high-robust prediction features and provides a promising tool for predicting carbon emissions, epidemics, and so forth.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3