Abstract
The significance of non-destructive testing (NDT) methods cannot be overstated as they help to evaluate the properties of a material without damaging/fracturing it. However, their applicability is dependent on their ability to provide reliable correlation with destructive tests such as tensile and flexural. This correlation becomes more problematic when the material is not homogeneous, such is the case with parts manufactured using a popular additive manufacturing process termed as fused filament fabrication (FFF). This process also requires optimisation of its parameters to achieve desired results. Therefore, this study aims to investigate the effects of four different nozzle temperatures, print bed temperatures, and print speeds on FFF-printed Haydale’s Synergy Graphene Enhanced Super Tough PLA through three non-destructive (ultrasonic, hardness, strain) and two destructive (tensile, flexural) testing methods. Samples were manufactured using Anet® ET4 Pro 3D printer and evaluated as per British and International standards. Two non-destructive tests, i.e., ultrasonic and hardness have been associated with evaluating the tensile properties of the manufactured parts. These results were correlated with destructive tensile testing and showed good agreement. The NDT method of strain measurement showed a very good correlation with the destructive three-point flexural test and was able to provide a reliable evaluation of flexural properties as a function of all three processing parameters. The results presented in this work highlight the importance of NDT methods and how they can be used to evaluate different properties of a material.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献