Author:
Li Heng,Doyle Conor M.,Minus Marilyn L.
Abstract
Filtration based processing of nanotube and polymer-nanotube dispersions is used to create polymer and nano-filler hybrid materials. The composite morphology consists of two layers: (1) a region where polymer chains have direct matrix interaction with the nano-fillers and (2) a nano-filler rich region excluded from matrix interactions. The experimental work here demonstrates the processing of this hybrid material using polyacrylonitrile (PAN) and single-wall carbon nanotubes (SWNT) at various PAN/SWNT weight concentrations. Mechanical analyses were performed to evaluate effective contributions from the SWNT in each of the defined layers. The region of high matrix-filler interactions exhibits blending behavior with material properties following suit. As a result, mechanical performance is consistent and begins to exceed theoretical predictions derived from Halpin–Tsai calculations. Tensile strength and modulus reached values as high as 60 MPa and 7.7 GPa, respectively, surpassing the performance of neat nano-filler (36 MPa, 3.9 GPa) and neat polymer matrix (44 MPa, 2.0 GPa) films. Additionally, the measurement of electrical properties shows that the blended polymer-SWNT region exhibits conductivity comparable to the filler. The results of this work suggest that blending polymers and nano-fillers is possible and may facilitate the production of materials with comparatively high mechanical performance and electrical conductivities.
Funder
United States Air Force Office of Scientific Research
Subject
Engineering (miscellaneous),Ceramics and Composites