A Thermic Effect on Degradation Kinetics of Sugar Cane Bagasse Polypropylene Composites

Author:

Motaung Tshwafo E.,Motloung Setumo V.,Koao Lehlohonolo F.,Malevu Thembinkosi D.,Linganiso Ella. C.

Abstract

In this study, thermal degradation mechanisms and the kinetics of PP (Polypropylene) composites containing alkali and saline treated SC (Sugar cane bagasse) have been evaluated using a non-isothermal thermogravimetric analysis under consistent nitrogen atmosphere. The study indicates dynamics of kinetics that need to be considered should the composites be applied in high temperature applications. NaOH treated composites revealed a reduced fiber size compared to the other composites. The presence of SC generally reduced the functional group intensities of FTIR peaks, however some peaks re-emerged after the treatments. The composites indicated higher thermal stability and char content than the pristine polymer. In fact, NaOH treated composite is more thermally stable, while the saline is the least stable of the rest. Well known reliable degradation kinetics methods were employed in order to unpack thermal degradation behavior and possible metaphors. Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) thermal degradation kinetic models are in agreement that the presence of both SC and those in the PP matrix that have been treated lead to increased activation energy values with the competing reactions in the degradation process. Nonetheless, the linear relation is not absolutely perfect and the competing reactions seem complex at lower temperatures as there are overlying inconsistencies in activation energies. Interestingly, bagasse indicated some effect on the mechanism that included the hindering of free radicals that emanated from the first cleavage of PP.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3