Abstract
The evolution of fracture zone controls the safety of underground coal gasification (UCG) in terms of gas emission and water leakage. In order to understand the fracture propagation in the confining rock of a UCG cavity with various influence factors, this paper implemented a set of numerical models based on different geological and operating conditions. Analysis was implemented on the mechanism of fracture propagation and its evolution characteristics, suggesting that (a) continuum expansion of the cavity leads a near-field fracture circle in confining rock initially, followed by the roof caving and successive propagation of shear band. (b) The key observed influence factors of fracture propagation are the grade of confining rock, overburden pressure, dimension of the cavity and gasifying pressure, the linear relationships between them, and the fracture height. Additionally, the fracture depth in the base board was mainly caused by tensile fracture. (c) A model was proposed based on the evolution of fracture height and depth in roof and base board, respectively. Validation of this model associated with orthogonal tests suggests a good capacity for predicting fracture distribution. This paper has significance in guiding the design of the gasifying operation and safety assessment of UCG cavities.
Funder
Major Scientific and Technological Project of China National Petroleum Corporation
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献