Thermodynamic Analysis and Optimization Design of a Molten Salt–Supercritical CO2 Heat Exchanger

Author:

Dong Xiaoming,Zhang Cancan,Wu Yuting,Lu Yuanwei,Ma Chongfang

Abstract

The performance of a heat exchanger is directly related to the energy conversion efficiency of the thermal storage system, and its optimal design is an important method to improve the performance of the heat exchanger. This paper uses the distributed parameter method to analyze the effect of the structural parameters and operating parameters of a heat exchanger on the entransy dissipation rate, the entransy dissipation number, the entransy dissipation heat resistance, entropy production rate, and entropy production number in a molten salt–supercritical CO2 concentric tube heat exchanger. The results show that the entransy dissipation rate and entropy production rate have the same trend, with the structural parameters and operating parameters, as well as the changes in the entransy dissipation number and entransy dissipation thermal resistance, jointly affected by the entransy dissipation rate and the heat exchange. Based on the above indicators, single-objective and multi-objective optimization calculations were carried out. The results show that taking the minimum entropy dissipation number, entransy dissipation heat resistance, and improved entropy production number as the objective functions, and using the heat transfer effectiveness as the evaluation index, the optimization effect is better. The ε value is increased by 41.2%, 39.5%, and 40.3% compared with the reference individual. In the multi-objective optimization, taking the minimum number of entransy dissipation and entropy production as the objective function, and using the efficiency of heat transfer and the pressure drop of the working fluid as the evaluation indicators, the optimization effect is better. Compared with the reference individual, the ε value increased by 23.5%, and ΔPh and ΔPc decreased by 51.9% and 32.5%, respectively. This study provides a reference for the optimization of supercritical CO2 heat exchangers by utilizing parameters such as entransy and entropy, which reflect the irreversible loss of the heat transfer process.

Funder

the Inner Mongolia Science and Technology Major Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. Concentrating Solar Power Gen 3 Demonstration Roadmap;Mehos,2017

2. Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition

3. Investigation on convection heat transfer performance of quaternary mixed molten salt based nanofluids in smooth tube

4. A Study of the Literature Review on Heat Transfer in A Helically Coiled Heat Exchanger;Bhuvaneswari;Int. J. Eng. Res. Technol.,2019

5. Development and testing of printed circuit heat exchanger for generation IV reactors;Mylavarapu;Trans. Am. Nucl. Soc.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3