An Experimental Investigation of Increasing the Thermal Efficiency of a Finned Tube Heat Exchanger by Using the Chimney Effect

Author:

Matuszczak MikołajORCID,Pietrowicz SławomirORCID

Abstract

In the paper, experimental analyses of the free convection heating transfer in a flat wavy-fin heat exchanger with the dimensions of 500 × 500 mm were investigated. The experimental reserch mainly included determining the average heat flux and heat-transfer coefficient for two selected types of finned heat exchangers. First, tests were conducted for exchangers without considering the so-called ’chimney’ effect; these tests will be treated as reference studies. Then, experiments for specially designed ’chimneys’ over the exchanger with heights of 350, 850, and 1350 mm, respectively, were carried out again. The analyses were performed for an average temperature difference between the heat-exchange surface and the environment in the range of 18 to 55 K. The experimental results demonstrated that, compared to the exchanger without a chimney, the addition of a chimney significantly affects the improvement in the thermal performance of the heat exchanger under natural convection conditions. Regarding the variant without a chimney, when a chimney is used with the highest height of 1350 mm and a maximum temperature difference of 55 K, the average heat flux increases by approximately 450% and the average heat-transfer coefficient is approximately 10 times higher. The heat exchanger characterised by lower airflow resistance showed higher values of average heat flux of 5 to 45% in the Rayleigh number range of 25 to 180. Studies have indicated that in some cases, a simple modification of the geometry of the heat exchanger leads to significant improvements in thermal performance and, in extreme cases, to the elimination of supporting equipment such as fans.

Funder

Wrocław University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3