A Novel Multi-Objective Optimal Design Method for Dry Iron Core Reactor by Incorporating NSGA-II, TOPSIS and Entropy Weight Method

Author:

Li YanORCID,Liu Yifan,Li Shasha,Qi Leijie,Xie JunORCID,Xie Qing

Abstract

Dry iron core reactors are widely used in various power quality applications. Manufacturers want to optimize the cost and loss simultaneously, which is normally achieved by the designers’ experience. This approach is highly subjective and can lead to a non-ideal product. Thus, an objective dry iron core reactor design approach to balance the cost and loss with a scientific basis is desired. In this paper, a multi-objective optimal design method is proposed to optimize both the cost and loss of the reactor, which provides an automatic and scientific design method. Specifically, a three-dimensional finite element model of dry iron core reactor is established, based on which the dependency of cost and loss upon the wire size of the reactor’s winding is studied by using joint Matlab-finite element method (FEM) simulation. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to search for the Pareto optimal solution set, out of which the optimal wire size of the reactor is determined by using the fusion of the technique for order preference by similarity to ideal solution (TOPSIS) method and the entropy weight method. TOPSIS helps the designer to balance the concern between cost and loss, while the entropy weight method can determine the weight information through the dispersion degree of cost and loss. This methodology can avoid personal random subjective opinion when selecting the design solution out of the Pareto set. The calculation shows that the cost and loss can be reduced by up to 17.85% and 19.45%, respectively, with the proposed method. Furthermore, the obtained optimal design is approved by experimental tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference32 articles.

1. A typical dry-type iron core reactor failure and its treatment measures;Li;Proceedings of the 2020 International Conference on Green Development and Environmental Science and Technology,2020

2. Magnetically controlled reactors design for weak grids

3. Optimization Design of Oil-Immersed Iron Core Reactor Based on the Particle Swarm Algorithm and Thermal Network Model

4. Thermal Analyses of Reactor under High-Power and High-Frequency Square Wave Voltage Based on Improved Thermal Network Model

5. Transformer and Inductor Design Handbook 3/E-Wm;Georgilakis,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Optimization of Power Transformer Diagnostics;Energies;2023-09-07

2. A Risk Assessment Optimization Model Based on TOPSIS Algorithm;Proceedings of the 5th International Conference on Information Technologies and Electrical Engineering;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3