A Real-Time Digital Twin and Neural Net Cluster-Based Framework for Faults Identification in Power Converters of Microgrids, Self Organized Map Neural Network

Author:

Lopez Juan R.ORCID,de Jesus Camacho JoseORCID,Ponce PedroORCID,MacCleery Brian,Molina ArturoORCID

Abstract

In developing distribution networks, the deployment of alternative generation sources is heavily motivated by the growing energy demand, as by environmental and political motives. Consequently, microgrids are implemented to coordinate the operation of these energy generation assets. Microgrids are systems that rely on power conversion technologies based on high-frequency switching devices to generate a stable distribution network. However, disrupting scenarios can occur in deployed systems, causing faults at the sub-component and the system level of microgrids where its identification is an economical and technological challenge. This paradigm can be addressed by having a digital twin of the low-level components to monitor and analyze their response and identify faults to take preventive or corrective actions. Nonetheless, accurate execution of digital twins of low-level components in traditional simulation systems is a difficult task to achieve due to the fast dynamics of the power converter devices, leading to inaccurate results and false identification of system faults. Therefore, this work proposes a fault identification framework for low-level components that includes the combination of Real-Time systems with the Digital Twin concept to guarantee the dynamic consistency of the low-level components. The proposed framework includes an offline trained Self Organized Map Neural Network in a hexagonal topology to identify such faults within a Real-Time system. As a case study, the proposed framework is applied to a three-phase two-level inverter connected to its digital model in a Real-Time simulator for open circuit faults identification.

Funder

Monterrey Institute of Technology and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3