The Effect of d10 Precious Elements on Structural, Magnetic and Elastic Properties of MnPt Alloy: A First-Principles Study

Author:

Diale Ramogohlo1ORCID,Ngoepe Phuti2,Chauke Hasani2,Moema Joseph1,Phasha Maje1ORCID

Affiliation:

1. Advanced Materials Division, Mintek, Private Bag X 3015, Randburg 2125, South Africa

2. Materials Modelling Centre, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa

Abstract

MnPt’s exceptional stability and extremely high Néel temperature have generated a lot of interest in data storage applications. Previously, it was reported experimentally that the MnPt alloy shows ferromagnetic (FM) behavior at room temperature. In this study, the effects of partial substitution of Pt with Pd, Au, and Ag on magnetic properties is investigated using density functional theory. The stability of Mn50Pt50−xMx (M = Pd, Au, Ag, x = 6.25, 12.5, 18.75) alloys was assessed by determining their thermodynamic, magnetic, and mechanical properties. The calculated lattice constants of Mn50Pt50 agree well with available theoretical results. The Mn50Pt50−xMx alloys’ formability was assessed by measuring the thermodynamic stability using the heat of formation. It was found that B2 Mn50Pt50−xPdx alloys (0 ≤ x ≤ 18.75) are thermodynamically stable due to the negative heat of formation close to that of a pristine MnPt alloy. Based on the elasticity results, the B2 Mn50Pt50−xPdx is most likely to undergo martensitic transformation for the entire considered composition range. From the calculated values of the Poisson′s ratio, it is shown that an increase in Pd, Ag, and Au effectively improves the ductility of the B2 Mn50Pt50−xMx compounds. It was revealed that ferromagnetism is maintained with Pd addition but significantly reduced in the case of Au and Ag. Thus, this work showed that density functional theory can be exploited to propose new possible compositions for future magnets in spintronic applications.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3