Prediction of Subsurface Microcrack Damage Depth Based on Surface Roughness in Diamond Wire Sawing of Monocrystalline Silicon

Author:

Wang Keying1,Gao Yufei12,Yang Chunfeng1

Affiliation:

1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China

2. Key Laboratory of Manufacturing Equipment of Shaanxi Province, Xi’an 710048, China

Abstract

In diamond wire saw cutting monocrystalline silicon (mono-Si), the material brittleness removal can cause microcrack damage in the subsurface of the as-sawn silicon wafer, which has a significant impact on the mechanical properties and subsequent processing steps of the wafers. In order to quickly and non-destructively obtain the subsurface microcrack damage depth (SSD) of as-sawn silicon wafers, this paper conducted research on the SSD prediction model for diamond wire saw cutting of mono-Si, and established the relationship between the SSD and the as-sawn surface roughness value (SR) by comprehensively considering the effect of tangential force and the influence of the elastic stress field and residual stress field below the abrasive on the propagation of median cracks. Furthermore, the theoretical relationship model between SR and SSD has been improved by adding a coefficient considering the influence of material ductile regime removal on SR values based on experiments sawing mono-Si along the (111) crystal plane, making the theoretical prediction value of SSD more accurate. The research results indicate that a decrease in wire speed and an increase in feed speed result in an increase in SR and SSD in silicon wafers. There is a non-linear increasing relationship between silicon wafer SSD and SR, with SSD = 21.179 Ra4/3. The larger the SR, the deeper the SSD, and the smaller the relative error of SSD between the theoretical predicted and experimental measurements. The research results provide a theoretical and experimental basis for predicting silicon wafer SSD in diamond wire sawing and optimizing the process.

Funder

National Key Research and Development Project

Natural Science Foundation of Shandong Province

Opening Foundation of Key Lab of Manufacturing Equipment of Shaanxi Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3