Microstructural Heterogeneity and Property Variations in Cast and Vacuum Hot-Pressed CoCrPtB Alloy

Author:

Li Yan12,Guan Weiming1,Wen Ming1ORCID,Guo Junmei1,Chen Ze13,Wang Chuanjun1

Affiliation:

1. Yunnan Precious Metals Laboratory, Sino-Platinum Metals Co., Ltd., Kunming 650106, China

2. Kunming Metallurgy College, Kunming 650033, China

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

Limited research has been undertaken regarding the homogeneity of CoCrPtB alloy billets. A CoCrPtB alloy was processed through casting and vacuum hot pressing. This investigation delved into the interconnection between the secondary dendrite arm spacing (SDAS) in the as-hot-pressed samples and their corresponding attributes, specifically Vickers hardness and magnetic properties. Systematic sampling was conducted on the cross-sectional layer and longitudinal surface. Upon examination of the cross-sectional layer proximate to the uppermost region of the hot casting, a discernible parabolic trend was observed for the SDAS that exhibited a gradual increment from the peripheral regions toward the central area along the width. Simultaneously, the fraction of the dendrite phase displayed a consistent linear decline, attaining its peak value at the central portion of the billet. Conversely, on the longitudinal surface, SDAS and the fraction of the dendrite phase remained fairly uniform within the same column sampling regions. However, a notable divergence was identified in the central section, characterized by an augmented SDAS and diminished dendrite phase content. This inherent microstructural inhomogeneity within the CoCrPtB alloy engendered discernible disparities in material properties.

Funder

the Yunnan Key Research and Development Program

Scientific and Technological Project of Yunnan Precious Metals Laboratory

Yunnan Development and Reform Commission Ten Thousand Talents Plan for Leading Industrial Technology Talents

the Innovation Talents Project of Yunnan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3