Composition and Element Distribution Mapping of γ′ and γ″ Phases of Inconel 718 by High-Resolution Scanning Transmission Electron Microscopy and X-ray Energy-Dispersive Spectrometry

Author:

Buffat Philippe A.1ORCID,Alexandrou Ioannis2,Czyrska-Filemonowicz Aleksandra3

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne, Centre Interdisciplinaire de Microscopie Electronique, Ch. des Vioz 14, 1865 Les Diablerets, Switzerland

2. Thermo Fisher Scientific, De Schakel 2, 5651 GH Eindhoven, The Netherlands

3. Faculty of Metals Engineering and Computer Science, Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by γ′ and γ″ particles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have adequate size and dispersion. The distribution of the γ′ and γ″ phases and their chemical composition were investigated in the nickel-based Inconel 718 superalloy by taking advantage of the new capabilities of scanning transmission electron microscopy and energy-dispersive X-ray spectrometry using a windowless multiple detector, a high-brightness Schottky electron gun, and a spherical aberration corrector in the illumination probe optics. A small routine was developed to deconvolute the respective compositions of γ′ and γ″ nanoprecipitates embedded in the γ matrix. Keeping the electron probe current low enough—a few hundred pA—prevented excessive irradiation damage during the acquisition of element maps and brought their spatial resolution down to the atomic column level to track their element compositions. The present results agree with and complement atomic probe tomography observations and Thermo-Calc predictions from the literature. The presence of an Al enrichment at the γ′/γ″ interface—which may control the γ″ phase coarsening—is observed in the last row of Al-Nb-Ti columns along this interface. In addition, a few columns with similar composition changes are found randomly distributed in the γ′ phase.

Funder

European Union

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3