Some Insights about the Applicability of Logistic Factorisation Machines in Banking

Author:

Slabber Erika1,Verster Tanja1ORCID,de Jongh Riaan1ORCID

Affiliation:

1. Centre for BMI, North-West University, Potchefstroom 2520, South Africa

Abstract

Logistic regression is a very popular binary classification technique in many industries, particularly in the financial service industry. It has been used to build credit scorecards, estimate the probability of default or churn, identify the next best product in marketing, and many more applications. The machine learning literature has recently introduced several alternative techniques, such as deep learning neural networks, random forests, and factorisation machines. While neural networks and random forests form part of the practitioner’s model-building toolkit, factorisation machines are seldom used. In this paper, we investigate the applicability of factorisation machines to some binary classification problems in banking. To stimulate the practical application of factorisation machines, we implement the fitting routines, based on logit loss and maximum likelihood, on commercially available software that is widely used by banks and other large financial services companies. Logit loss is usually used by the machine learning fraternity while maximum likelihood is popular in statistics. Depending on the coding of the target variable, we will show that these methods yield identical parameter estimates. Often, banks are confronted with predicting events that occur with low probability. To deal with this phenomenon, we introduce weights in the above-mentioned loss functions. The accuracy of our fitting algorithms is then studied by means of a simulation study and compared with logistic regression. The separation and prediction performance of factorisation machines are then compared to logistic regression and random forests by means of three case studies covering a recommender system, credit card fraud, and a credit scoring application. We conclude that logistic factorisation machines are worthy competitors of logistic regression in most applications, but with clear advantages in recommender systems applications where the number of predictors typically outnumbers the number of observations.

Funder

Department of Science and Innovation (DSI) of South Africa

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference39 articles.

1. Modified balanced random forest for improving imbalanced data prediction;Agusta;International Journal of Advances in Intelligent Informatics,2019

2. Interaction terms in logit and probit models;Ai;Economics Letters,2003

3. Allison, Paul D. (, January March). Measures of fit for logistic regression. Paper presented at SAS Global Forum 2014 Conference, Washington, DC, USA.

4. Baesens, Bart, Roesch, Daniel, and Scheule, Harald (2016). Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS, John Wiley & Sons.

5. Random forests;Breiman;Machine Learning,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3