Inertial Data-Based AI Approaches for ADL and Fall Recognition

Author:

Martins Luís M.ORCID,Ribeiro Nuno FerreteORCID,Soares Filipa,Santos Cristina P.ORCID

Abstract

The recognition of Activities of Daily Living (ADL) has been a widely debated topic, with applications in a vast range of fields. ADL recognition can be accomplished by processing data from wearable sensors, specially located at the lower trunk, which appears to be a suitable option in uncontrolled environments. Several authors have addressed ADL recognition using Artificial Intelligence (AI)-based algorithms, obtaining encouraging results. However, the number of ADL recognized by these algorithms is still limited, rarely focusing on transitional activities, and without addressing falls. Furthermore, the small amount of data used and the lack of information regarding validation processes are other drawbacks found in the literature. To overcome these drawbacks, a total of nine public and private datasets were merged in order to gather a large amount of data to improve the robustness of several ADL recognition algorithms. Furthermore, an AI-based framework was developed in this manuscript to perform a comparative analysis of several ADL Machine Learning (ML)-based classifiers. Feature selection algorithms were used to extract only the relevant features from the dataset’s lower trunk inertial data. For the recognition of 20 different ADL and falls, results have shown that the best performance was obtained with the K-NN classifier with the first 85 features ranked by Relief-F (98.22% accuracy). However, Ensemble Learning classifier with the first 65 features ranked by Principal Component Analysis (PCA) presented 96.53% overall accuracy while maintaining a lower classification time per window (0.039 ms), showing a higher potential for its usage in real-time scenarios in the future. Deep Learning algorithms were also tested. Despite its outcomes not being as good as in the prior procedure, their potential was also demonstrated (overall accuracy of 92.55% for Bidirectional Long Short-Term Memory (LSTM) Neural Network), indicating that they could be a valid option in the future.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3