Vapor Phase Modification for Selective Enrichment of Grafted Styrene/Acrylonitrile onto Carbon Nanotubes Via ATRP

Author:

Azadbakht MaryamORCID,Esmizadeh ElnazORCID,Vahidifar Ali,Mekonnen Tizazu H.,Salami-Kalajahi MehdiORCID

Abstract

Nitric acid vapor phase oxidation of multi-walled carbon nanotubes (MWCNTs) was proposed as a promising technique to fabricate poly styrene-co-acrylonitrile (SAN)-grafted-CNTs via atom transfer radical polymerization (ATRP). The in-situ ATRP grafting approach was successfully employed to graft polystyrene (PS), SAN and polyacrylonitrile (PAN), onto the convex surfaces of pristine MWCNTs (PCNT) and acid-functionalized MWCNTs (FCNT). Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and thermogravimetric analysis (TGA) confirmed the effectiveness of the modification via the ATRP grafting approach. The molar composition of acrylonitrile in the synthesized copolymer on the surface of CNTs for an FCNTs was calculated to be about 80% and 67.5% by 1H-NMR and TGA respectively, whereas the value is lower for PCNTs. Morphological studies showed that SAN-grafted FCNTs exhibit rougher surface morphology compared to the SAN-grafted PCNTs. Moreover, the higher diameter of the FCNTs indicated the higher polymer content, which was coated onto CNTs functionalized by vapor-phase oxidation. Therefore, the vapor phase oxidation strategy employed in this study could be utilized as a general method to prepare CNTs which can serve as an ATRP macroinitiator for the fabrication of various polymer grafted CNTs.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3