Abstract
The sum capacity of the general K-user Gaussian Interference Channel (GIC) is known only when the channel coefficients are such that treating interference as noise (TIN) is optimal. The Han-Kobayashi (HK) scheme is an extensively studied coding scheme for the K-user interference channel (IC). Simple HK schemes are HK schemes with Gaussian signaling, no time sharing and no private-common power splitting. The class of simple HK (S-HK) schemes includes the TIN scheme and schemes that involve various levels of interference decoding and cancellation at each receiver. For the 2-user GIC, simple HK schemes are sufficient to achieve all known sum capacity results—sum capacity under mixed, strong and noisy interference conditions. We derive channel conditions under which simple HK schemes achieve sum capacity for general K-user Gaussian ICs. For the K-user GIC, these results generalize existing sum capacity results for the TIN scheme to the class of simple HK schemes.
Subject
General Physics and Astronomy