An Artificial Intelligence Approach to Predict the Thermophysical Properties of MWCNT Nanofluids

Author:

Bakthavatchalam Balaji,Shaik Nagoor BashaORCID,Hussain Patthi Bin

Abstract

Experimental data of thermal conductivity, thermal stability, specific heat capacity, viscosity, UV–vis (light transmittance) and FTIR (light absorption) of Multiwalled Carbon Nanotubes (MWCNTs) dispersed in glycols, alcohols and water with the addition of sodium dodecylbenzene sulfonate (SDBS) surfactant for 0.5 wt % concentration along a temperature range of 25 °C to 200 °C were verified using Artificial Neural Networks (ANNs). In this research, an ANN approach was proposed using experimental datasets to predict the relative thermophysical properties of the tested nanofluids in the available literature. Throughout the designed network, 65% and 25% of data points were comprehended in the training and testing set while the other 10% was utilized as a validation set. The parameters such as temperature, concentration, size and time were considered as inputs while the thermophysical properties were considered as outputs to develop ANN models of further predictions with unseen datasets. The results found to be satisfactory as the (coefficient of determination) R2 values are close to 1.0. The predicted results of the nanofluids’ thermophysical properties were then validated with experimental dataset values. The validation plots of all individual samples for all properties were graphically generated. A comparison study was conducted for the robustness of the proposed approach. This work may help to reduce the experimental time and cost in the future.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3