DEM-CFD Simulation and Experiments on the Flow Characteristics of Particles in Vortex Pumps

Author:

Gao Xiongfa,Shi Weidong,Shi Ya,Chang Hao,Zhao Ting

Abstract

Due to their outstanding anti-clogging ability, vortex pumps have been gradually promoted and applied in recent years. However, when transporting sewage containing solids, they will still encounter problems such as partial clogging, overwork wear, etc., therefore, it is particularly important to master the flow characteristics of solid particles in the vortex pump. In this paper, the Discrete Element Model-Computational Fluid Dynamics (DEM-CFD) coupled calculation method is introduced into the numerical simulation of vortex pumps and particles with diameters of 1, 2 and 3 mm and concentrations of 1% and 5%, were subjected to numerical simulation and study of the flow characteristics of the particles, then rapeseed was used to represent solid particles in tests. It was obvious that the CFD results were in good agreement with the experimental results, whereby the high speed photography experimental results of the pump inlet section show that the experimental results are consistent with the numerical simulation results. The results show that there are three typical movement tracks of solid particles in the vortex pump: in Track A particles flow through the impeller and enter the volute by the through flow, in Track B particles go directly into the volute through the lateral cavity under the influence of circulation flow and in Track C the particles enter the impeller from the front cover end area of the impeller blade inlet and then into the volute through the back half area of blade. It can be found that the particles are mainly distributed at the back of the volute.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference26 articles.

1. Effect of impeller position on performance and measurement of vaneless cavity flow field;Sha;J. Agric. Mach.,2010

2. Design Parameters of Vortex Pumps: A Meta-Analysis of Experimental Studies

3. Optimum design and test of cyclone pump based on CFD orthogonal test;Gao;J. Agric. Mach.,2014

4. Experiment on solid-liquid two-phase flow transport characteristics of vortex pump;Sha;J. Agric. Mach.,2013

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3