Development and Performance Analysis of a New Self-Powered Magnetorheological Damper with Energy-Harvesting Capability

Author:

Li Lingbo,Hu GuoliangORCID,Yu Lifan,Qi Haonan

Abstract

Magnetorheological (MR) dampers, used as intelligent semi-active vibration control devices to achieve low energy consumption, fast response, controllability, and other capabilities are generally installed with a variety of sensors on their exterior to ensure that the damping force can be accurately controlled. However, external sensors are often affected by external complications that reduce the reliability of the damper, and the cost of powering the damper coils in remote locations where power is not available can be significantly increased. Based on these problems, a new self-powered MR damper scheme is proposed. The proposed MR damper has both energy-harvesting capabilities and damping controllability, and greatly improves the stability and application range of the device by converting vibration energy into electrical energy to supply the excitation coil. The MR damper can drive the piston rod in a linear reciprocating motion by external excitation, which converts mechanical energy into electrical energy via a DC brushless three-phase generator after conversion by a double-linkage mechanism. At the same time, the electrical energy generated by the generator is passed into the excitation coil to change the output damping force of the damper. Meanwhile, the damping performance and energy-harvesting efficiency of the new self-powered MR damper is experimentally tested. Experimental results show the damping force of the device reaches 1040 N when the applied current is 0.6 A. The proposed self-powered MR damper has an instantaneous voltage amplitude of 1.782 V and a peak phase power of 4.428 W when the input excitation amplitude is 12.5 mm and the frequency is 3 Hz.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and experimental study of a stepped magnetorheological damper with power generation;Smart Materials and Structures;2024-07-25

2. Multi-stage hysteresis modelling of magnetorheological dampers and experimental verification;International Journal of Mechanical Sciences;2023-09

3. Modeling of magnetorheological dampers based on a dual-flow neural network with efficient channel attention;Smart Materials and Structures;2023-08-25

4. Experimental investigations on weak magnetization-enhanced force-rheological polishing of SiC mold;The International Journal of Advanced Manufacturing Technology;2023-06-14

5. Mathematical Modeling and Analysis of Energy Dissipation in Magnetorheological Dampers;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3