Abstract
The hydrogen fuel cell (HFC) vehicle is an important clean energy vehicle which has prospects for development. The behavior of the hydrogen fuel cell (HFC) vehicle power system, and in particular, the proton-exchange membrane fuel cell, has been extensively studied as of recent. The development of the dynamic system modeling technology is of paramount importance for HFC vehicle studies; however, it is hampered by the separation of the electrochemical properties and dynamic properties. In addition, the established model matching the follow-up control method lacks applicability. In attempts to counter these obstructions, we proposed an improved fuzzy (Proportional Integral Derivative) PID control method considering HFC voltage-output characteristics. By developing both the electrochemical and dynamic model for HFC vehicle, we can realize the coordinated control of HFC and power cell. The simulation results are in good agreement with the experimental results in the two models. The proposed control algorithm has a good control effect in all stages of HFC vehicle operation.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Zhejiang Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献