Influences of Control Parameters on Reduction of Energy Losses in Electrohydraulic Valve with Stepping Motors

Author:

Milecki AndrzejORCID,Ortmann Jarosław

Abstract

In many heavy machines, the use of high force drives is required. For such tasks, electrohydraulic servo drives with proportional valves are used most often. In these valves, the proportional electromagnets are applied. If high precise control is additionally required, it is necessary to use expensive servo valves or precise stepping motors. In this paper, the application of a valve with one (or with two) stepping motors in the electrohydraulic servo drive is described. Such motors may work in a micro-step mode, which enables the precise positioning of the valve spool with low energy consumption. The control system structure that was used for positioning, consisting of such an electrohydraulic servo drive with a valve having stepping motors, is described. In the investigations, the following control parameters are considered: the number of stepping motors used, proportional gain coefficients, supply pressure, and desired step distance. The simulation model of the servo drive is proposed, enabling the investigations of energy consumption during the positioning process. In the investigations, the drive step responses are recorded and compared, taking into account the rise time and energy consumption. The overshot-free algorithm is used in the following step and tested in positioning tasks. The collected results of energy consumption of the drive during the positioning process are compared with other solutions.

Funder

Polish Ministry of Science and Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Hydraulic Servo Systems, Modelling, Identification and Control;Jelali,2003

2. Hydraulic Drives in Stationary Applications;Murrenhoff,2006

3. Hydraulic Control Systems;Manring,2020

4. A high-efficient solution for electro-hydraulic actuators with energy regeneration capability;Fassbender;Energy,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3