Evaluation of Deep Learning-Based Neural Network Methods for Cloud Detection and Segmentation

Author:

Hensel Stefan,Marinov Marin B.ORCID,Koch Michael,Arnaudov DimitarORCID

Abstract

This paper presents a systematic approach for accurate short-time cloud coverage prediction based on a machine learning (ML) approach. Based on a newly built omnidirectional ground-based sky camera system, local training and evaluation data sets were created. These were used to train several state-of-the-art deep neural networks for object detection and segmentation. For this purpose, the camera-generated a full hemispherical image every 30 min over two months in daylight conditions with a fish-eye lens. From this data set, a subset of images was selected for training and evaluation according to various criteria. Deep neural networks, based on the two-stage R-CNN architecture, were trained and compared with a U-net segmentation approach implemented by CloudSegNet. All chosen deep networks were then evaluated and compared according to the local situation.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3