A Stackelberg Security Game for Adversarial Outbreak Detection in the Internet of Things

Author:

Chen Lili,Wang ZhenORCID,Li Fenghua,Guo Yunchuan,Geng Kui

Abstract

With limited computing resources and a lack of physical lines of defense, the Internet of Things (IoT) has become a focus of cyberattacks. In recent years, outbreak propagation attacks against the IoT have occurred frequently, and these attacks are often strategical. In order to detect the outbreak propagation as soon as possible, t embedded Intrusion Detection Systems (IDSs) are widely deployed in the IoT. This paper tackles the problem of outbreak detection in adversarial environment in the IoT. A dynamic scheduling strategy based on specific IDSs monitoring of IoT devices is proposed to avoid strategic attacks. Firstly, we formulate the interaction between the defender and attacker as a Stackelberg game in which the defender first chooses a set of device nodes to activate, and then the attacker selects one seed (one device node) to spread the worms. This yields an extremely complex bilevel optimization problem. Our approach is to build a modified Column Generation framework for computing the optimal strategy effectively. The optimal response of the defender’s problem is expressed as mixed-integer linear programming (MILPs). It is proved that the solution of the defender’s optimal response is a NP-hard problem. Moreover, the optimal response of defenders is improved by an approximate algorithm--a greedy algorithm. Finally, the proposed scheme is tested on some randomly generated instances. The experimental results show that the scheme is effective for monitoring optimal scheduling.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference53 articles.

1. The Internet of Things: A Survey;Li,2015

2. Internet of Things security: A survey

3. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks

4. DDoS in the IoT: Mirai and Other Botnets

5. Kaspersky https://www.kaspersky.com/blog/attack-on-dyn-explained/13325/

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3