Hardware Platform-Aware Binarized Neural Network Model Optimization

Author:

Vo Quang Hieu,Asim Faaiz,Alimkhanuly Batyrbek,Lee SeunghyunORCID,Kim Lokwon

Abstract

Deep Neural Networks (DNNs) have shown superior accuracy at the expense of high memory and computation requirements. Optimizing DNN models regarding energy and hardware resource requirements is extremely important for applications with resource-constrained embedded environments. Although using binary neural networks (BNNs), one of the recent promising approaches, significantly reduces the design’s complexity, accuracy degradation is inevitable when reducing the precision of parameters and output activations. To balance between implementation cost and accuracy, in addition to proposing specialized hardware accelerators for corresponding specific network models, most recent software binary neural networks have been optimized based on generalized metrics, such as FLOPs or MAC operation requirements. However, with the wide range of hardware available today, independently evaluating software network structures is not good enough to determine the final network model for typical devices. In this paper, an architecture search algorithm based on estimating the hardware performance at the design time is proposed to achieve the best binary neural network models for hardware implementation on target platforms. With the XNOR-net used as a base architecture and target platforms, including Field Programmable Gate Array (FPGA), Graphic Processing Unit (GPU), and Resistive Random Access Memory (RRAM), the proposed algorithm shows its efficiency by giving more accurate estimation for the hardware performance at the design time than FLOPs or MAC operations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. Deep Learning for Computer Vision: A Brief Review

2. Speech Recognition Using Deep Neural Networks: A Systematic Review

3. Optimal brain damage;LeCun,1990

4. Learning both weights and connections for efficient neural networks;Han;arXiv,2015

5. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding;Han;arXiv,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3