The Effect of Strengthening Methods on the Performance of Reinforced Concrete Columns against Vehicle Impact

Author:

Fuhaid Abdulrahman AlORCID,Sohel Kazi Md AbuORCID,Arifuzzaman MdORCID

Abstract

Columns at the ground floor and parking garages that could be hit by a car pose a significant risk to the structural stability of the building superstructures. Generally, these columns are not built to sustain the lateral impact force generated by car–column collision. In this study, the performance of axially loaded retrofitted reinforced concrete (RC) columns against car impact is evaluated using finite element (FE) simulation. The FE model of the RC column with axial load was validated with experimental results. For the car-crushing simulations, two SUV car models with a mass of about 2250 kg, which had been experimentally validated, were used to simulate the car–column collision. The results of the FE analysis revealed that once the impact speed exceeds 30 km/h, the horizontal impact force has a significant effect on the column joint at the foundation. The impact force increases linearly as the impact velocity of the car increases up to 20 km/h. When car impact velocities are more than 20 km/h, the generated impact force increases in power to the car-crashing velocity. Both types of cars have almost the same effect on the generation of impact force and the lateral displacement of the column. It is found that the generated impact forces are higher than the recommended design values of Eurocode 1. To protect the column from car impact damage, two types of column-strengthening systems were investigated. One form of strengthening system involves retrofitting the lower half of the column with an aramid fiber-reinforced polymer (AFRP) warp, while the other involves putting a reinforced concrete jacket of up to 1.3 m in the height of the column. Based on the comparative study, design recommendations are suggested to protect the RC column from accidental car-crashing damage.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3