Spatiotemporal Variation and Ecological Risk Assessment of Heavy Metals in Industrialized Urban River Sediments: Fengshan River in Southern Taiwan as a Case Study

Author:

Lin Kuan-Nan,Lim Yee-Cheng,Chen Chiu-Wen,Chen Chih-FengORCID,Kao Chih-Ming,Dong Cheng-DiORCID

Abstract

The sediment pollution index acts as a useful indicator for assessing anthropogenic pollution within river drainage basins. An industrialized urban river, Fengshan River in Kaohsiung City, southern Taiwan has been suffering heavy metal pollution from surrounding factories. In this study, spatial and seasonal variations in heavy metals in sediments from seven sampling sites of Fengshan River were determined to assess sediment pollution status and potential ecological risk using multiple sediment pollution indices. Results showed that the heavy metal concentrations displayed large spatial variations. Severe contamination of heavy metals, especially for Cr, Hg, and Zn in the lower reaches of Fengshan River, may attribute to wastewater discharges from leather processing and metal finishing factories along the river drainage basin. An increase in metal concentrations from upstream to downstream indicated that heavy metals tend to accumulate in tidal reaches, probably as a result of the flocculation effect. Frequent heavy rainfall in the wet season can enhance surface runoff to discharge metal pollutants from non-point sources (scattered factories) into the river. Assessment of multiple pollution indices showed moderately polluted (mCd = 3.9, PLI = 2.6) and considerable ecological risk (RI = 540, mERMQ = 0.55), indicating Fengshan River sediments, particularly in the lower reaches, are considered toxic and can cause adverse effects to benthic organisms. Organic matters showed a good correlation with heavy metals, which play an important role in the spatiotemporal variations in heavy metal pollutants in the Fengshan River sediments. This study can provide valuable information for river pollution remediation, and urban planning and management.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3