Visual Sentiment Analysis Using Deep Learning Models with Social Media Data

Author:

Chandrasekaran GaneshORCID,Antoanela Naaji,Andrei Gabor,Monica Ciobanu,Hemanth JudeORCID

Abstract

Analyzing the sentiments of people from social media content through text, speech, and images is becoming vital in a variety of applications. Many existing research studies on sentiment analysis rely on textual data, and similar to the sharing of text, users of social media share more photographs and videos. Compared to text, images are said to exhibit the sentiments in a much better way. So, there is an urge to build a sentiment analysis model based on images from social media. In our work, we employed different transfer learning models, including the VGG-19, ResNet50V2, and DenseNet-121 models, to perform sentiment analysis based on images. They were fine-tuned by freezing and unfreezing some of the layers, and their performance was boosted by applying regularization techniques. We used the Twitter-based images available in the Crowdflower dataset, which contains URLs of images with their sentiment polarities. Our work also presents a comparative analysis of these pre-trained models in the prediction of image sentiments on our dataset. The accuracies of our fine-tuned transfer learning models involving VGG-19, ResNet50V2, and DenseNet-121 are 0.73, 0.75, and 0.89, respectively. When compared to previous attempts at visual sentiment analysis, which used a variety of machine and deep learning techniques, our model had an improved accuracy by about 5% to 10%. According to the findings, the fine-tuned DenseNet-121 model outperformed the VGG-19 and ResNet50V2 models in image sentiment prediction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3