Numerical Study of Near-Infrared Light Propagation in Aqueous Alumina Suspensions Using the Steady-State Radiative Transfer Equation and Dependent Scattering Theory

Author:

Fujii HiroyukiORCID,Terabayashi Iori,Aoki Toshiaki,Inoue Yuki,Na Hyeonwoo,Kobayashi Kazumichi,Watanabe Masao

Abstract

Understanding light propagation in liquid phantoms, such as colloidal suspensions, involves fundamental research of near-infrared optical imaging and spectroscopy for biological tissues. Our objective is to numerically investigate light propagation in the alumina colloidal suspensions with the mean alumina particle diameter of 55 nm at the volume fraction range 1–20%. We calculated the light scattering properties using the dependent scattering theory (DST) on a length scale comparable to the optical wavelength. We calculated the steady-state radiative transfer and photon diffusion equations (RTE and PDE) using the DST results based on the finite difference method in a length scale of the mean free path. The DST calculations showed that the scattering and reduced scattering coefficients become more prominent at a higher volume fraction. The anisotropy factor is almost zero at all the volume fractions, meaning the scattering is isotropic. The comparative study of the RTE with the PDE showed that the diffusion approximation holds at the internal region with all the volume fractions and the boundary region with the volume fraction higher than 1%. Our findings suggest the usefulness of the PDE as a light propagation model for the alumina suspensions rather than the RTE, which provides accurate but complicated computation.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3