Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment

Author:

Nunes Leonel J. R.ORCID,Curado AntónioORCID,Azevedo Rolando,Silva Joaquim P.ORCID,Lopes Nuno,Lopes Sérgio IvanORCID

Abstract

Radon (222Rn) is a well-known source of indoor air contamination since in its gaseous form it is a reported source of ionizing radiation that belongs to the group of rare gases. Radon occurs naturally in soils and rocks and results from the radioactive decay of its longer-lived progenitors, i.e., radium, uranium, and thorium. Radon releases itself from the soil and rocks, which mainly occurs in outdoor environments, not causing any kind of impact due to its fast dilution into the atmosphere. However, when this release occurs in confined and poorly ventilated indoor environments, this release can result in the accumulation of high concentrations of radon gas, being recognized by the World Health Organization (WHO) as the second cause of lung cancer, after smoking. Assessing the indoor radon concentration demands specific know-how involving the implementation of several time-consuming tasks that may include the following stages: (1) radon potential assessment; (2) short-term/long-term radon measurement; (3) laboratory data analysis and processing; and (4) technical reporting. Thus, during stage 1, the use of indirect methods to assess the radon occurrence potential, such as taking advantage of existent natural radiation maps (which have been made available by the uranium mineral prospecting campaigns performed since the early 1950s), is crucial to put forward an ICT (Information and Communication Technology) platform that opens up a straightforward approach for assessing indoor radon potential at an early stage, operating as a pre-diagnosis evaluation tool that is of great value for supporting decision making towards the transition to stage 2, which typically has increased costs due to the need for certified professionals to handle certified instruments for short-term/long-term radon measurement. As a pre-diagnosis tool, the methodology proposed in this article allows the assessment of the radon potential of a specific building through a WebGIS-based platform that adopts ICT and Internet technologies to display and analyze spatially related data, employing a multicriteria approach, including (a) gamma radiation maps, (b) built environment characteristics, and (c) occupancy profile, and thus helping to determine when the radon assessment process should proceed to stage 2, or, alternatively, by eliminating the need to perform additional actions.

Funder

TECH - Technology, Environment, Creativity and Health

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3