A Road Truncation-Based Location Privacy-Preserving Method against Side-Weight Inference Attack

Author:

Li QingyuanORCID,Wu HaoORCID,Wu Xiang,Zhao NingORCID,Dong Lan

Abstract

Taking advantage of precise positioning technology, location-based service (LBS) has brought a lot of convenience to people’s daily life and made the city smarter. However, the LBS applications also bring some challenges to personal location privacy protection. In order to obtain services from LBS providers, users have to upload their queries including sensitive information, such as identities and locations. This information may be leaked out by the LBS providers or even eavesdropped on by malicious adversaries, which may cause privacy leakage. To tackle this problem, many solutions have been investigated under the assumption that users are uniformly distributed. However, the users are not always uniformly distributed in real-world situations. For a side-weight inference attack, the adversary would infer that the target user is more likely to belong to the road section with more users, resulting in performance deterioration. In this paper, we investigate the issue of location privacy preservation against side-weight inference attack for non-uniform distributed road network. Meanwhile, we consider the cost function of LBS and formulate the object as a mixed integer programming problem. Then, we propose a road truncation-based scheme to protect location privacy. The road section with high user density is designed to be truncated. Finally, simulation results show that our scheme meets the demand for privacy protection at a low cost. As a result, our scheme is proven to protect users’ location privacy effectively and efficiently.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3