Abstract
The parameter extraction of device models is critically important for circuit simulation. The device models in the existing parameter extraction software are physics-based analytical models, or embedded Simulation program with integrated circuit emphasis (SPICE) functions. The programming implementation of physics-based analytical models is tedious and error prone, while it is time consuming to run the device model evaluation for the device model parameter extraction software by calling the SPICE. We propose a novel modeling technique based on a neural network (NN) for the optimal extraction of device model parameters in this paper, and further integrate the NN model into device model parameter extraction software. The technique does not require developers to understand the device model, which enables faster and less error-prone parameter extraction software developing. Furthermore, the NN model improves the extraction speed compared with the embedded SPICE, which expedites the process of parameter extraction. The technique has been verified on the BSIM-SOI model with a multilayer perceptron (MLP) neural network. The training error of the NN model is 4.14%, and the testing error is 5.38%. Experimental results show that the trained NN model obtains an extraction error of less than 6%, and its extraction speed is thousands of times faster than SPICE in device model parameter extraction.
Funder
Research on Modeling, Analysis and Optimization Technologies for ULP Circuit
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference32 articles.
1. Artificial neural networks: a tutorial
2. An Analysis of Deep Neural Network Models for Practical Applications;Canziani;arXiv,2016
3. Future Device Modeling Trends
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献