Sliding-Mode Control of a Photovoltaic System Based on a Flyback Converter for Microinverter Applications

Author:

Ramos-Paja Carlos AndresORCID,Bastidas-Rodriguez Juan DavidORCID,Saavedra-Montes Andres JulianORCID

Abstract

A method to design a sliding-mode control of a photovoltaic system based on a flyback converter is proposed. First, the photovoltaic system is modeled to design the sliding-mode controller and to select the parameters of a maximum power point tracking algorithm. Then, the detailed design of the sliding-mode controller is presented, which includes the establishment of the sliding surface. The transversality, reachability, and equivalent control tests are also developed. Because the power extraction of the PV system is carried out through a P&O MPPT algorithm, the selection of the perturbation magnitude, the perturbation period, and the maximum switching frequency is integrated into the control design. Additionally, since the derivative of the MPPT output could prevent the achievement of the reachability test, a filter to limit that derivative is also integrated into the design process. The whole method is illustrated in an application example where the data of a BP585 PV module and a real flyback converter are used. Once the parameters were obtained, circuital simulations performed in PSIM validated the intended operation of a PV system composed of a PV module and a flyback converter, which is connected to a source that produces the perturbations of an AC grid.

Funder

Universidad Nacional de Colombia

Ministerio de Ciencia, Tecnología e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Snapshot of Global PV Markets 2021,2021

2. Photovoltaic Sources Modeling

3. Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches

4. Overview of micro-inverters as a challenging technology in photovoltaic applications

5. Enphase. 2021. Comparing Inverters: Make the Smartest Choice in Solarhttps://www4.enphase.com/en-au/products-and-services/microinverters/vs-string-inverter

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3