Abstract
The use of anthropometric measurements in machine learning algorithms for hypertension prediction enables the development of simple, non-invasive prediction models. However, different machine learning algorithms were utilized in conjunction with various anthropometric data, either alone or in combination with other biophysical and lifestyle variables. It is essential to assess the impacts of the chosen machine learning models using simple anthropometric measurements. We developed and tested 13 machine learning methods of neural network, ensemble, and classical categories to predict hypertension in adolescents using only simple anthropometric measurements. The imbalanced dataset of 2461 samples with 30.1% hypertension subjects was first partitioned into 90% for training and 10% for validation. The training dataset was reduced to eight simple anthropometric measurements: age, C index, ethnicity, gender, height, location, parental hypertension, and waist circumference using correlation coefficient. The Synthetic Minority Oversampling Technique (SMOTE) combined with random under-sampling was used to balance the dataset. The models with optimal hyperparameters were assessed using accuracy, precision, sensitivity, specificity, F1-score, misclassification rate, and AUC on the testing dataset. Across all seven performance measures, no model consistently outperformed the others. LightGBM was the best model for all six performance metrics, except sensitivity, whereas Decision Tree was the worst. We proposed using Bayes’ Theorem to assess the models’ applicability in the Sarawak adolescent population, resulting in the top four models being LightGBM, Random Forest, XGBoost, and CatBoost, and the bottom four models being Logistic Regression, LogitBoost, SVM, and Decision Tree. This study demonstrates that the choice of machine learning models has an effect on the prediction outcomes.
Funder
University Malaysia Sarawak (UNIMAS) Cross Disciplinary Grant
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference40 articles.
1. World Health Organization (2021, April 13). Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
2. Tackling, G., and Borhade, M.B. (2021, October 20). Hypertensive Heart Disease, Available online: https://www.ncbi.nlm.nih.gov/books/NBK539800/.
3. Hypertension in children: New trends and challenges;Clin. Sci.,2010
4. Prevalence of hypertension in relation to anthropometric indices among secondary adolescents in Mbarara, Southwestern Uganda;Ital. J. Pediatr.,2020
5. Mattoo, T.K. (2009). Definition and Diagnosis of Hypertension in Children and Adolescents, UpToDate.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献