Patent Analysis Using Bayesian Data Analysis and Network Modeling

Author:

Park SangsungORCID,Jun SunghaeORCID

Abstract

Patent analysis is to analyze patent data to understand target technology. Patent data contains various detailed information about the developed technology. Therefore, many studies concerning patent analysis have been carried out in the technology analysis fields. Most traditional methods for technology analysis were based on qualitative approaches such as Delphi survey. However, the patent analysis methods based on statistics and machine learning have been introduced recently. In this paper, we proposed a statistical method for quantitative patent analysis. Moreover, we selected drone technology as the target technology for patent analysis. To understand drone technology, we analyzed the patents on drone technology. We searched the patent documents related to drone technology and transformed them to structured data using text mining techniques. First, we visualized the patent keywords to identify the technological structure of a drone. Next, using Bayesian additive regression trees, we analyzed the structured patent data to construct technology scenarios for drones. To illustrate the performance and validity of our proposed research, we presented the experimental results of patent analysis using patent documents related to drone technology.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3