Abstract
A computer-aided design/computer-aided manufacturing (CAD/CAM) resin block material for restoration of single-implant abutments can be milled and cemented on an optimized standard titanium abutment as a cheaper solution or, alternatively, individualization of the crown–abutment connection is required to fulfill the same mechanical requirements. The aim of this study was to evaluate how different structural and geometric configurations of the abutment influence the resistance of a nano ceramic resin crown (NCRC). During the test, 30 implants with an internal conical tapered configuration were considered. Each implant received a standard titanium abutment: in group 1, NCRCs were directly bonded to the titanium abutments; in group 2, NCRCs were cemented on a customized zirconia framework and then cemented on a standardized titanium abutment. Three crowns of each group were submitted to a static load test until failure. The remaining crowns were submitted to a fatigue test protocol with a dynamic load. The static and dynamic test showed earlier failure for group 1. In group 1, complete breaking of NCRCs was observed for all samples, with an almost total titanium abutment exposition. In the static tests, group 2 showed a mode of failure that involved only the crown, which partially debonded from the zirconia abutment. Within the limitations of the present preliminary study, it was possible to conclude that the shape of the abutment mainly influences the fatigue strength compared to the static tensile strength. The results of the performed test show that NCRC bonded to the customized zirconia abutments, and presented a 75% survival rate when compared to the same material bonded directly to a standard titanium abutment.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献