UAV Swarm Real-Time Rerouting by Edge Computing D* Lite Algorithm

Author:

Lee Meng-Tse,Chuang Ming-Lung,Kuo Sih-Tse,Chen Yan-Ru

Abstract

Seeking to give unmanned aerial vehicles (UAVs) a higher level of autonomous control, this study uses edge computing systems to replace the ground control station (GCS) commonly used to control UAVs. Since the GCS belongs to the central control architecture, the edge computing system of the distributed architecture can give drones more flexibility in dealing with changing environmental conditions, allowing them to autonomously and instantly plan their flight path, fly in formation, or even avoid obstacles. Broadcast communications are used to realize UAV-to-UAV communications, thus allocating tasks among a swarm of UAVs and ensuring that each individual UAV collaborates as an integrated member of the group. The dynamic path programming problem for UAV swarm missions uses a two-phase tabu search with a 2-Opt exchange method and an A* search as the path programming algorithm. Distance is taken as a cost function for path programming. The turning points of no-fly zones are then increased and expanded based on drone fleet coverage, thus preventing drones from entering prohibited areas. Unlike previous work, which mostly considers only single no-fly zones, this approach accounts for multiple restricted areas, ensuring that a UAV swarm can complete its assigned task without violating no-fly zones. A drone encountering an obstacle while traveling along the route set by the algorithm will update the map information in real time, allowing for instant recharting of the optimal path to the goal as a reverse search using the D* Lite algorithm.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Dull, Dirty, Dangerous Mission? Send in the Robot Vehiclehttps://www.army.mil/article/154248/dull_dirty_dangerous_mission_send_in_the_robot_vehicle

2. Optimal Control of an Uninhabited Loyal Wingman;Humphreys,2016

3. Design and Validation of a Route Planner for Logistic UAV Swarm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3