Growing Neural Gas with Different Topologies for 3D Space Perception

Author:

Toda YuichiroORCID,Wada Akimasa,Miyase Hikari,Ozasa Koki,Matsuno Takayuki,Minami Mamoru

Abstract

Three-dimensional space perception is one of the most important capabilities for an autonomous mobile robot in order to operate a task in an unknown environment adaptively since the autonomous robot needs to detect the target object and estimate the 3D pose of the target object for performing given tasks efficiently. After the 3D point cloud is measured by an RGB-D camera, the autonomous robot needs to reconstruct a structure from the 3D point cloud with color information according to the given tasks since the point cloud is unstructured data. For reconstructing the unstructured point cloud, growing neural gas (GNG) based methods have been utilized in many research studies since GNG can learn the data distribution of the point cloud appropriately. However, the conventional GNG based methods have unsolved problems about the scalability and multi-viewpoint clustering. In this paper, therefore, we propose growing neural gas with different topologies (GNG-DT) as a new topological structure learning method for solving the problems. GNG-DT has multiple topologies of each property, while the conventional GNG method has a single topology of the input vector. In addition, the distance measurement in the winner node selection uses only the position information for preserving the environmental space of the point cloud. Next, we show several experimental results of the proposed method using simulation and RGB-D datasets measured by Kinect. In these experiments, we verified that our proposed method almost outperforms the other methods from the viewpoint of the quantization and clustering errors. Finally, we summarize our proposed method and discuss the future direction on this research.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3