Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images

Author:

Magán ElenaORCID,Sesmero M. PazORCID,Alonso-Weber Juan ManuelORCID,Sanchis AraceliORCID

Abstract

This work presents the development of an ADAS (advanced driving assistance system) focused on driver drowsiness detection, whose objective is to alert drivers of their drowsy state to avoid road traffic accidents. In a driving environment, it is necessary that fatigue detection is performed in a non-intrusive way, and that the driver is not bothered with alarms when he or she is not drowsy. Our approach to this open problem uses sequences of images that are 60 s long and are recorded in such a way that the subject’s face is visible. To detect whether the driver shows symptoms of drowsiness or not, two alternative solutions are developed, focusing on the minimization of false positives. The first alternative uses a recurrent and convolutional neural network, while the second one uses deep learning techniques to extract numeric features from images, which are introduced into a fuzzy logic-based system afterwards. The accuracy obtained by both systems is similar: around 65% accuracy over training data, and 60% accuracy on test data. However, the fuzzy logic-based system stands out because it avoids raising false alarms and reaches a specificity (proportion of videos in which the driver is not drowsy that are correctly classified) of 93%. Although the obtained results do not achieve very satisfactory rates, the proposals presented in this work are promising and can be considered a solid baseline for future works.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review for the fatigue driving behavior recognition method;Journal of Intelligent & Fuzzy Systems;2024-01-10

2. Artificial intelligence modelling human mental fatigue: A comprehensive survey;Neurocomputing;2024-01

3. A sophisticated Drowsiness Detection System via Deep Transfer Learning for real time scenarios;AIMS Mathematics;2024

4. Drowsy Driving Detection System Using Face Detection;2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS);2023-11-01

5. Deep Learning and Computer Vision Approaches for Vehicular Safety Systems;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3