Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan

Author:

Ali FayazORCID,Khan Nasrullah,Abd_Allah Elsayed FathiORCID,Ahmad AdnanORCID

Abstract

The sub-tropical broadleaved forests in Pakistan are the main constituents of the ecosystem services playing a vital role in the global carbon cycle. Monotheca buxifolia (Falc.) A. DC. is an important constituent of these forests, encompassing a variety of ecological and commercial uses. To our best knowledge, no quantitative studies have been conducted in these forests across the landscape to establish a baseline for future monitoring. We investigated the forest structural attributes, growing stock characteristics and total biomass carbon stock and established relationships among them in the phytocoenosis of Monotheca forests along an altitudinal gradient in Pakistan to expand an eco-systemic model for assessment of the originally-implemented conservation strategies. A floristic survey recorded 4986 individuals of 27 species in overstory and 59 species in the understory stratum. Species richness (ANOVA; F = 3.239; p = 0.045) and Simpson’s diversity (ANOVA; F = 2.802; p = 0.043) differed significantly in three altitudinal zones, with a maximum value for lower elevations, followed by middle and higher elevations. Based on the importance values, Acacia modesta and Olea ferruginea are strong companions of M. buxifolia at lower and higher altitudes, whereas forests at mid elevation represent pure crop of M. buxifolia (IVI = ≥85.85%). A similar pattern in stem density, volume and Basal area were also recorded. The carbon stock in trees stratum (51.81 T ha−1) and understory vegetation (0.148 T ha−1) contributes high values in the lower elevation forests. In contrast, soil carbon had maximum values at higher elevation (36.21 T ha−1) and minimum at lower elevation (16.69 T ha−1) zones. Aboveground biomass carbon stock (AGB BMC) of woody trees, understory vegetation and soil organic carbon (SOC) were estimated higher (77.72 T ha−1) at higher and lower (68.65 T ha−1) elevations. Likewise, the AGB BMC exhibited a significant (p < 0.05) negative correlation with elevation and positive correlation with soil carbon. We concluded that lower elevation forests are more diverse and floristically rich in comparison to higher altitudinal forests. Similarly, the biomass carbon of Monotheca forests were recorded maximum at low altitudes followed by high and middle ranges, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3